# 回溯算法

# 什么是回溯

回溯 Backtracking 』采用试错的思想,它尝试分步的去解决一个问题。在分步解决问题的过程中,当它通过尝试发现现有的分步答案不能得到有效的正确的解答的时候,它将取消上一步甚至是上几步的计算,再通过其它可能的分步解答再次尝试寻找问题的答案。

通常用最简单的递归方法来实现,在反复重复上述的步骤后可能出现两种情况:

  • 找到一个可能存在的正确的答案。
  • 在尝试了所有可能的分步方法后宣告该问题没有答案。

很多经典的数学问题都可以用回溯算法解决,比如数独、八皇后、0-1 背包、图的着色、旅行商问题、全排列等等。

在最坏的情况下,回溯法的时间复杂度为「 指数时间 」。

与穷举法相比,回溯法的 “聪明” 之处在于能适时 “回头”,若再往前走不可能得到解就回溯,退一步另找线路,这样可省去大量的无效操作。这种操作称为『 剪枝

# 八皇后问题

有一个 8x8 的棋盘,希望往里放 8 个棋子(皇后),每个棋子所在的行、列、对角线都不能有另一个棋子。

下图中,第一幅图是满足条件的一种方法,第二幅图是不满足条件的。

2020-08-17-12-40-58

我们把这个问题划分成 8 个阶段,依次将 8 个棋子放到第一行、第二行、第三行……第八行。在放置的过程中,我们不停地检查当前放法,是否满足要求。如果满足,则跳到下一行继续放置棋子;如果不满足,那就再换一种放法,继续尝试。

int[] result = new int[8];//全局或成员变量,下标表示行,值表示queen存储在哪一列

public void cal8queens(int row) { // 调用方式:cal8queens(0);
  if (row == 8) { // 8个棋子都放置好了,打印结果
    printQueens(result);
    return; // 8行棋子都放好了,已经没法再往下递归了,所以就return
  }
  for (int column = 0; column < 8; ++column) { // 每一行都有8中放法
    if (isOk(row, column)) { // 有些放法不满足要求
      result[row] = column; // 第row行的棋子放到了column列
      cal8queens(row+1); // 考察下一行
    }
  }
}

private boolean isOk(int row, int column) {//判断row行column列放置是否合适
  int leftup = column - 1, rightup = column + 1;
  for (int i = row-1; i >= 0; --i) { // 逐行往上考察每一行
    if (result[i] == column) return false; // 第i行的column列有棋子吗?
    if (leftup >= 0) { // 考察左上对角线:第i行leftup列有棋子吗?
      if (result[i] == leftup) return false;
    }
    if (rightup < 8) { // 考察右上对角线:第i行rightup列有棋子吗?
      if (result[i] == rightup) return false;
    }
    --leftup; ++rightup;
  }
  return true;
}

private void printQueens(int[] result) { // 打印出一个二维矩阵
  for (int row = 0; row < 8; ++row) {
    for (int column = 0; column < 8; ++column) {
      if (result[row] == column) System.out.print("Q ");
      else System.out.print("* ");
    }
    System.out.println();
  }
  System.out.println();
}

# 0-1 背包问题

0-1 背包是非常经典的算法问题,很多场景都可以抽象成这个问题模型。这个问题的经典解法是动态规划,也可以采用回溯算法,实现更简单但没有那么高效。

我们有一个背包,背包总的承载重量是 W kg。现在我们有 n 个物品,每个物品的重量不等,并且不可分割。「 0-1 」 的意思就是,一个物品要么装入背包,要么不装。

我们现在期望选择几件物品,装载到背包中。在不超过背包所能装载重量的前提下,如何让背包中物品的总重量最大?

对于每个物品来说,都有两种选择,装进背包或者不装进背包。对于 n 个物品来说,总的装法就有 2^n 种,去掉总重量超过 W kg 的,从剩下的装法中选择总重量最接近 W kg 的。

用回溯的方法。我们可以把物品依次排列,整个问题就分解为了 n 个阶段,每个阶段对应一个物品怎么选择。先对第一个物品进行处理,选择装进去或者不装进去,然后再递归地处理剩下的物品。

采用「 剪枝 」技巧,当发现已经选择的物品的重量超过 W kg 之后,我们就停止继续探测剩下的物品。


public int maxW = Integer.MIN_VALUE; //存储背包中物品总重量的最大值
// cw 表示当前已经装进去的物品的重量和;i 表示考察到哪个物品了;
// w 背包重量;items 表示每个物品的重量;n 表示物品个数
// 假设背包可承受重量 100,物品个数 10,物品重量存储在数组 a 中,那可以这样调用函数:
// f(0, 0, a, 10, 100)
public void f(int i, int cw, int[] items, int n, int w) {
  if (cw == w || i == n) { // cw == w 表示装满了; i == n 表示已经考察完所有的物品
    if (cw > maxW) maxW = cw;
    return;~~~~
  }
  f(i+1, cw, items, n, w);
  if (cw + items[i] <= w) { // 已经超过可以背包承受的重量的时候,就不要再装了
    f(i+1,cw + items[i], items, n, w);
  }
}
上次更新: 8/18/2020, 2:07:39 AM